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Abstract 

Background:  High levels of pairwise linkage disequilibrium (LD) in single nucleotide polymorphism (SNP) array or 
whole-genome sequence data may affect both performance and efficiency of genomic prediction models. Thus, this 
warrants pruning of genotyping data for high LD. We developed an algorithm, named SNPrune, which enables the 
rapid detection of any pair of SNPs in complete or high LD throughout the genome.

Methods:  LD, measured as the squared correlation between phased alleles (r2), can only reach a value of 1 when 
both loci have the same count of the minor allele. Sorting loci based on the minor allele count, followed by compari-
son of their alleles, enables rapid detection of loci in complete LD. Detection of loci in high LD can be optimized by 
computing the range of the minor allele count at another locus for each possible value of the minor allele count that 
can yield LD values higher than a predefined threshold. This efficiently reduces the number of pairs of loci for which 
LD needs to be computed, instead of considering all pairwise combinations of loci. The implemented algorithm 
SNPrune considered bi-allelic loci either using phased alleles or allele counts as input. SNPrune was validated against 
PLINK on two datasets, using an r2 threshold of 0.99. The first dataset contained 52k SNP genotypes on 3534 pigs and 
the second dataset contained simulated whole-genome sequence data with 10.8 million SNPs and 2500 animals.

Results:  SNPrune removed a similar number of SNPs as PLINK from the pig data but SNPrune was almost 12 times 
faster than PLINK. From the simulated sequence data with 10.8 million SNPs, SNPrune removed 6.4 and 1.4 million 
SNPs due to complete and high LD. Results were very similar regardless of whether phased alleles or allele counts 
were used. Using allele counts and multi-threading with 10 threads, SNPrune completed the analysis in 21 min. Using 
a sliding window of up to 500,000 SNPs, PLINK removed ~ 43,000 less SNPs (0.6%) in the sequence data and SNPrune 
was 24 to 170 times faster, using one or ten threads, respectively.

Conclusions:  The SNPrune algorithm developed here is able to remove SNPs in high LD throughout the genome 
very efficiently in large datasets.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Most current applications of genomic data involve either 
high-density single nucleotide polymorphism (SNP) 
arrays or whole-genome sequence data. Depending on 
the genetic diversity of the samples and the density of 
SNP arrays, there may be considerable redundancy in loci 
[1], in the sense that many pairs of SNPs are in very high 
or complete linkage disequilibrium (LD), i.e. they have 

an r2 value [2] of (close to) 1. The extent of such redun-
dancy is expected to be especially large for genomic data 
from populations with a small effective population size, 
which indicates high levels of LD, such as that typically 
observed in livestock populations e.g. [1, 3]. For applica-
tions such as genomic prediction, it is common practice 
to remove one SNP from each pair of SNPs with an r2 
value of 1 [4]. Removing loci based on high levels of pair-
wise LD is commonly known as LD pruning. If all pos-
sible pairs of redundant loci are considered for pruning, 
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computation of pairwise LD between all available SNPs 
may not be computationally feasible.

Several tools exist that compute pairwise LD between 
SNPs [5, 6]. These tools are used to characterize the extent 
of LD in a population [7–9], to evaluate LD in regions 
on the genome where significant associations have been 
detected in genome-wide association studies (GWAS) 
[10–12], but also to prune for LD [5]. Characterization of 
the extent of LD in a population and evaluation of LD in 
regions on the genome require computation of LD across 
relatively short distances on the genome. For this reason, 
but also to reduce overall computational requirements, 
existing tools generally compute LD between pairs of SNPs 
located within a certain distance on the genome, as defined 
by the user. However, for LD pruning, it may be desirable 
to consider LD for all pairwise combinations of loci.

Wiggans et  al. [4] noted that highly correlated SNPs 
should have similar MAF, and thus they evaluated only 
pairs of SNPs with a difference in MAF less than 2.5% 
units. These authors simply considered that two SNPs 
are perfectly correlated if the genotypes were all the same 
(0–0, 1–1, and 2–2) or all opposite (0–2, 1–1, and 2–0), 
while allowing 0.5% of the individual genotypes to differ 
from those rules, to allow for genotyping errors.

The objectives of our study were (1) to develop an 
algorithm to be able to detect quickly any pair of SNPs 
in complete or very high LD in very large datasets, using 
the assumption that highly correlated SNPs should have 
similar MAF, and (2) to demonstrate the performance of 
this algorithm.

Methods
Detection of SNPs in complete LD
The first step in the SNPrune algorithm is to identify 
redundant SNPs because they are in complete LD with 
other SNPs. The pseudo-code of this first step that is 
described hereafter is provided in Additional file 1.

One way to detect SNPs in complete LD with other 
SNPs, is to compute the squared correlation between 
their phased alleles, hereafter termed r2LD , which is equiv-
alent to the r2 value described by Hill and Robertson [2]:

where ai,j,l is the code of the phased allele l of individual i at 
SNP j , ai,k ,l is the code of the phased allele l of individual i 
at SNP k , and n is the number of individuals. Computation 
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of all squared correlations between all phased alleles of m 
loci involves computation of 
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/2 correlations and 
is computationally unfeasible if m is very large, as may be 
the case for some high-density SNP arrays, but especially 
for whole-genome sequence data.

Considering that the squared correlation between 
phased alleles of two SNPs can only be 1 when the MAF 
(and thus the total count of the minor allele) are the same 
at both loci, a more efficient approach is to take the fol-
lowing steps for each of the SNPs:

(1)	 Compute the total count of the minor allele across 
all individuals.

(2)	 Sort all SNPs on these counts.
(3)	 For any pair of SNPs that have the same minor allele 

count, compare the pairwise phased alleles for both 
haplotypes of each individual and stop as soon as an 
individual is identified that has a haplotype with the 
minor allele at one locus and the major allele at the 
other locus, or vice versa.

(4)	 If all animals passed the check in step (3), then 
remove the “leftmost SNP” (which is the SNP with 
the lowest minor allele count due to the sorting in 
step (2); if both SNPs have the same minor allele count, 
the one that appeared in the data first is removed).

In step (1), first the count of the minor allele is com-
puted for each locus j , by computing the sum of the 
alleles (

∑

i ai,j,l) assuming that one allele is coded as 0 and 
the other as 1, and then translating that into the count of 
the number of minor alleles as:

This means that for each SNP it is assumed that the 
minor alleles are coded as 1 and the major alleles are 
coded as 0, without changing the coding of the individual 
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alleles stored in memory. This assumption is used here-
after as well. To avoid having to change the coding for 
many individual allele counts for the comparison in step 
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(3), the algorithm stores for each SNP the information 
on whether the count of the major or the minor allele is 
used. In step (3), there are two possibilities for two SNPs 
with the same sum of alleles:

1.	 Both SNPs have the same allele code for the minor 
allele;

2.	 The two SNPs have opposite allele codes for the 
minor allele.

If (1) is the case, then in step (3) the code of the phased 
alleles on each haplotype within each individual should 
be the same for SNPs j and k , i.e. both should be either 0 
or 1, to reach a squared correlation of 1. If (2) is the case, 
then in step (3) the phased alleles on each haplotype of 
SNPs j and k within each individual should either be 0 
and 1 or 1 and 0, respectively, for those SNPs to reach a 
squared correlation of 1.

When no phased allelic data is available, the r2 value 
between allele counts ( r2ac ) is computed, which is a good 

pseudo-code of this second step that is described here-
after is provided in Additional file  1. Continuing from 
Eq. (1), i.e. using phased alleles coded as 0 or 1, the aim 
here is to identify pairs of SNPs with an r2LD value higher 
than a pre-defined threshold t , for which the following 
holds:

Note that all terms in Eq. (1) can be computed once per 
SNP and stored, except for 

∑2
l=1

∑

i ai,j,lai,k ,l . To isolate 
this term, we use the earlier assumption that for any pair 
of SNPs, the minor alleles are coded as 1 and the major 
alleles are coded as 0. In this way, the covariance between 
loci arises only from combinations of alleles coded as 1 
on both loci, and consequently in all cases rLD is higher 
than 0. Therefore, Eq. (4) can be simplified to:

Then, it follows that:

Due to the assumption that minor alleles are coded as 1 
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maximized. This is achieved, when an allele 1 at locus j is 
as often as possible observed together with an allele 1 at 
locus k . In a formula, the expected maximum number of 
times that this can happen is:
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= r2ac [13]. The 
above steps can be applied to detect any pairs of SNPs 
with r2ac = 1 , by replacing in Eq.  (1) e.g. 
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with 

∑

i xi,j , where xi,j is the allele count (ac) of individual 
i at SNP j , yielding:

Thus, in this case, allele counts per individual are com-
pared instead of phased alleles within haplotypes and 
individuals.

Detection of SNPs in high LD
In parallel to the identification of SNPs in complete LD, 
it may be of interest to identify SNPs in (very) high LD, 
for instance with r2LD values higher than 0.95 or 0.99. 
This is the second step in the SNPrune algorithm. The 
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Consider that we are comparing locus j and k , for 
which Eq.  (11) is satisfied. If for any subset of the data, 
Eq. (11) is not satisfied, meaning that:

then the r2LD value between loci j and k cannot exceed 
the threshold t . Thus, after identifying pairs of SNPs 
based on sums across all individuals using the inter-
val defined in Eq. (10), we evaluate those pairs based on 
sums of subsets of the individuals. This involves comput-
ing “partial” sums for an arbitrary number of subsets of 
the data. We used 10 subsets that contained 10, 20,…, 
100% of the data. Note that those partial sums can be 
computed once for every SNP and stored. Those partial 
sums are tested against the condition defined in Eq. (12). 
Whenever one of the partial sums fulfils the condition in 
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In spite of the fact that this considerably reduces the 
number of r2LD values that need to be computed, ini-
tial analyses showed that the total number might still 
be equal to several billions for datasets with a few mil-
lion SNPs. In an attempt to further reduce the num-
ber of combinations for which r2LD values need to be 
computed, we noted that the same principle can be 
applied to any (random) subset of the data. Because in 
our algorithm, due to sorting based on MAF, and the 
assumption that minor alleles are coded as 1, in all cases 
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Eq. (12), no other comparisons are performed for the pair 
of SNPs j and k . Note that this comparison based on par-
tial sums should not be performed for any pair of SNPs 
in which one SNP has a MAF of exactly 0.5, because in 
this case coding the minor allele as 1 is ambiguous. The 
final step of the algorithm is to compute r2LD values for 
all pairs of SNPs that did not fail the test based on par-
tial sums. In this last step, for any of those pairs of SNPs 
only 

∑2
l=1

∑

i ai,j,lai,k ,l is computed, since all other values 
in Eq.  (1) are computed once and stored, as previously 
noted.

Since the algorithm to detect SNPs that are in complete 
LD is much more efficient than the algorithm to detect 
SNPs that are in high LD, both algorithms are applied 
sequentially in SNPrune when the aim is to prune for 
high LD. This is especially useful when pruning whole-
genome sequence data, in which the number of SNPs 
in complete LD may be relatively large compared to the 
total number of SNPs [14].

The algorithm described above, which relies on phased 
alleles, can be applied to allele counts as well, by assum-
ing that, in fact, phased alleles are known. This involves 
the assumption that if an individual is heterozygous at 
two loci, the minor allele at the two SNPs reside in the 
same haplotype, since this will give the maximum pos-
sible contribution to the r2 value. In Fig.  1 and Addi-
tional file 2, we show that the expected maximum values 
of r2LD and r2ac are virtually the same for values ranging 
from ~ 0.95 to 1.0 (i.e. 

(

Emax

(

r2ac
)

/Emax

(

r2LD
))

 has values 
ranging from 1.0000 to 1.0007), which confirms that, in 
this range, we can use the algorithm for r2LD to identify 
which loci may surpass the threshold for r2ac . The only 
other change that should be made to the algorithm for 
using allele counts instead of phased alleles on input, is 
that, in the final step, r2ac instead of r2LD are computed.

Data pruning
To demonstrate the performance of the algorithm devel-
oped here, we applied it to two datasets. The first data-
set comprised 3534 pigs with genotypes for 52,843 SNPs, 
which originated from the 60k SNP array. Details of this 
dataset are described by Cleveland et al. [15]. The geno-
types were partly imputed, and defined as a real number 
on the 0–2  scale. Before pruning the data, these values 
were transformed as follows. Values lower or equal to 
0.5 were set to 0, values higher or equal to 1.5 were set to 
2, and all other values were set to 1. The second dataset 
was simulated using QMSim [16] and contained whole-
genome sequence data. The simulation process tried to 
mimic a historic dairy cattle population and a modern 
population under selection. The targeted effective popu-
lation sizes ( Ne ) that changed over time reflected differ-
ent estimated Ne values during the history of the US and 

Canadian Holstein cattle [17]. After the historic popula-
tion, 20 generations of 2500 animals with an equal sex 
ratio were simulated, using 200 males and 2500 females 
as parents. All male parents were replaced at each gen-
eration, and were selected based on breeding values 
for a polygenic trait with an accuracy of 0.8. After each 
generation, half of the female parents were replaced by 
all females generated in this generation. The final data-
set, used for analyses, contained all 2500 animals of the 
last generation. For these animals, 10,812,225 segregat-
ing SNPs were available, spread across 29 autosomes. 
The phase of the alleles was outputted by QMSim and 
assumed to be known without error in the analyses to 
prune SNPs based on LD.

The algorithm developed here was used to prune both 
datasets that are described above based on r2ac . In addi-
tion, the whole-genome sequence dataset was also 
pruned based on phased alleles, to demonstrate the dif-
ference between both strategies. In all cases, a threshold 
for r2 of 0.99 was used. To compare performances, the 
datasets were also pruned based on r2ac using the software 
PLINK version 1.90 beta [18, 19]. Pruning based on LD 
in PLINK is performed using a sliding window along the 
genome. For the pig dataset, it was still possible to con-
sider all pairwise combinations by including all SNPs in 
one window. For the sequence data, this was not pos-
sible within acceptable computing time. Thus, sliding 
windows of 50, 500, 5000, 50,000, 500,000, or 5,000,000 
SNPs were used for the sequence data, that were shifted 
forward in steps of 10% of the window size, i.e. with 5, 50, 

Fig. 1  Relationship between expected maximum values for r2 values 
computed based on allele count ( r2ac ) or phased alleles ( r2

LD
 ). Pairs of r2 

values are indicated by black dots. The red line indicates r2ac = r
2

LD
 as 

a reference
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500, 5000, 50,000, or 500,000 SNPs, respectively. The LD 
threshold used for pruning was 0.99, i.e. the same value 
as for SNPrune. For window sizes of up to 500,000 SNPs, 
PLINK was also run using the option that estimates r2LD 
based on phasing information obtained with maximum 
likelihood. The command line argument used to run 
PLINK using r2ac was (using a window of 5000 SNPs) the 
following: plink --bed data.bed --indep-pairwise 5000 
500 0.99, and when using the maximum likelihood phas-
ing information it was: plink --bed data.bed --indep-pair-
phase 5000 500 0.99.

Results
Pig data
The pig dataset was pruned only by considering allele 
counts, since no map or phasing information was avail-
able. We performed pruning three times by using the two 
algorithms SNPrune and PLINK (Table 1). The first time, 
the data were fed to both programs without any pre-sort-
ing based on MAF, and SNPrune and PLINK removed 
9126 and 9038 SNPs, respectively, with 6792 SNPs that 
overlapped. This relatively small overlap was most likely 
largely due to the removal of different SNPs from each 
pair in high LD, because the order in which SNPs were 
processed differed between programs. The second time, 
the order of the SNPs was based on increasing MAF, to 
make sure that both programs processed the SNPs in the 
same order. In this case, SNPrune and PLINK removed 
9126 and 9098 SNPs, respectively, with 6844 SNPs that 
overlapped. Finally, the data were first pre-sorted on 
MAF, and then pre-pruned for complete LD. This prun-
ing step removed 3830 SNPs. The remaining 49,013 
SNPs, still pre-sorted based on MAF, were pruned for 
high LD. In this case, SNPrune and PLINK removed 
5296 and 5283 SNPs, respectively, with 4939 SNPs that 
overlapped.

PLINK computed all 1.4 × 109 pairwise r2ac values. Con-
sidering the analyses of SNPrune, a relevant question is 
how efficient is the algorithm in avoiding computation of 
r2ac values that were predicted to never reach the imposed 
threshold of 0.99. Using Eq.  (9), SNPrune filtered 
9,898,092 pairs of SNPs that potentially could have a r2ac 
higher than 0.99 (Table 2). Based on partial sums of the 
minor allele, the number of r2ac that needed to be com-
puted decreased to 3,718,230. This was only 0.27% of the 
total number of possible r2ac values in the entire dataset, 
or 0.31% of the total number of possible r2ac values after 
pruning for complete LD.

Simulated sequence data
First, pruning of the simulated sequence data was done 
by using SNPrune based on phased alleles or allele 
counts (Table  3). Results using one or ten threads were 
identical. In total, 6,367,210 and 6,366,971 SNPs were 
removed based on complete LD, and another 1,428,122 
and 1,428,725 SNPs were removed based on an r2ac or 
r2LD higher than 0.99, using allele counts and phased 
alleles, respectively. In total, 3,016,893 and 3,016,529 of 
10,812,225 SNPs remained after pruning, using allele 
counts or phased alleles, respectively. Sets of SNPs that 
were removed by using phased alleles or allele counts 
showed an overlap of more than 99.9% (results not 
shown).

Pruning of the sequence data was also done using 
PLINK. It was not possible to consider all possible pair-
wise r2 values within an acceptable computing time, so 
we used sliding windows ranging from 50 to 5,000,000 
SNPs. Whether pruning was based on allele counts or 
maximum likelihood derived phasing information, hardly 
affected the results. For example, the difference in num-
ber of SNPs removed for the window size of 5000 SNPs 
was only 342, which represents 0.0044% of the SNPs 
removed, while the overlap between removed SNPs was 
more than 99.9%. This result is in agreement with the 
SNPrune results using either allele counts or phased Table 1  Number of  pruned SNPs from  the  52,843 SNPs 

present on the 60k pig SNP array

a  Either the LD pruning is done in one step, or in two steps, where 3830 SNPs in 
complete LD with other SNPs are removed in the first step, and the remaining 
SNPs in high LD are removed in the second step
b  Including the 3830 removed due to complete LD
c  Overlap between SNPs pruned by SNPrune and PLINK

Analysis One stepa One stepa pre-
sorted on MAF

Two stepa pre-
sorted on MAF

Number 
of SNPs pruned 
out

Total Total High LD Totalb

SNPrune 9126 9126 5296 9126

PLINK 9038 9098 5283 9113

Overlapc 6792 6844 4939 8778

Table 2  Numbers of  SNP pairs for  which r2 values were 
computed for the pig data

a  Number of computed r2 values as percentage of the total number of r2 values
b  Number of computed r2 values as percentage of the total number of r2 values 
after pruning for complete LD

Number of pairs of SNPs Allele counts

Possibly > 0.99 9,898,092

< 0.99 (partial sums) 6,179,862

Computed r2 values 3,718,230

Percentage (all SNPs)a 0.27

Percentage (after pruning for complete LD)b 0.31
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alleles, for which the overlap between removed SNPs 
was also close to 100%. When allele counts were used 
in PLINK, 5,411,028 SNPs remained after pruning with 
a window of 50 and this number dropped to 3,059,391 
with a window of 5,000,000 (Table 3). When a window of 
5,000,000 SNPs was used, PLINK removed 42,498 SNPs 
less than SNPrune based on allele counts.

The number of r2 values computed by PLINK ranged 
from 2.65 × 109 to 2.65 × 1014 with window sizes rang-
ing from 50 to 5,000,000 (Table  4). SNPrune identi-
fied ~ 107.5 × 109 pairs of SNPs that potentially could 
have a r2ac higher than 0.99 (Table  5). Based on partial 
sums of the minor allele, the number of r2ac that needed 
to be computed was reduced to ~ 61.2 × 109. Thus, the 
number of computed r2 values was only 0.08% of the 
total number of possible r2 values in the entire dataset, 
or 0.47% of the total number of possible r2 values after 
pruning for complete LD.

Computational requirements
The computing time required to process the pig data, 
averaged across five analyses and using one thread for 
all analyses, was equal to 17.2 s for SNPrune and 3 min 
9.3  s for PLINK. Thus, SNPrune was 11 times faster 
than PLINK. For the sequence data with a single thread, 
SNPrune required 4  h 16  min using phased alleles, and 
2 h 28 min using allele counts (Fig. 2). Using ten threads, 
SNPrune required 42  min using phased alleles, and 
21  min using allele counts, i.e. the latter almost halved 
the computing time. Computing times for PLINK were 
as short as only 1 min with a sliding window of 50, and 
increased linearly with increasing window size, to a 

computing time of 58  h 44  min using a window size of 
500,000 SNPs. Window size and step size (i.e. the dis-
tance between the first SNP for two consecutive win-
dows) increased each time by a factor 10. This means that 
when the window size increased by a factor 10, the num-
ber of computed r2 values roughly increased by 102, while 
the number of windows decreased by a factor 10. Thus, 
in effect, the number of computations increased by a fac-
tor ~ 10, which caused the observed linear increase with 
increasing window size.

For the pig data, the peak RAM use was 213  Mb for 
SNPrune, and 215  Mb for PLINK. For the sequence 
data, the peak RAM use for SNPrune was 56.5 Gb using 
phased alleles and 29.8  Gb using allele counts. We ran 
the analysis using allele counts of all SNPs in PLINK (i.e. 

Table 3  Number of pruned SNPs from the 10,812,225 SNPs included in the simulated sequence dataset

a  Using a sliding window of 50, 500, 5000, 50,000, 500,000 or 5,000,000 SNPs
b  The r2 values are computed between allele counts, considering no phasing (NP)
c  The r2 values are computed between alleles that are phased based on maximum likelihood phasing (MLP)

Pruning approach Number of SNPs pruned out Number of SNPs left

Complete LD High LD Total

SNPrune allele counts 6,367,210 1,428,122 7,795,332 3,016,893

SNPrune phased alleles 6,366,971 1 428 725 7,795,696 3,016,529

PLINK (w50a) NPb NA NA 5,401,197 5,411,028

PLINK (w500a) NPb NA NA 7,547,118 3,265,107

PLINK (w5000a) NPb NA NA 7,740,937 3,071,288

PLINK (w50000a) NPb NA NA 7,750,558 3,061,667

PLINK (w500000a) NPb NA NA 7,752,008 3,060,217

PLINK (w5000000a) NPb NA NA 7,752,834 3,059,391

PLINK (w50a) MLPc NA NA 5,401,527 5,410,698

PLINK (w500a) MLPc NA NA 7,543,234 3,268,991

PLINK (w5000a) MLPc NA NA 7,741,279 3,070,946

PLINK (w50000a) MLPc NA NA 7,751,008 3,061,217

PLINK (w500000a) MLPc NA NA 7,752,485 3,059,740

Table 4  Number of  computed r2 values in  the  simulated 
sequence dataset using PLINK

a  Computed as (10, 812, 225/ss)×
(

ws
2 − ws

)

/2 , where 10,812,225 is the 
total number of SNPs, ss is the step size (i.e. the size of the shift of the windows), 
and ws is the window size used

Window size Step size Number 
of computed r2 
valuesa

50 5 2.65 × 109

500 50 2.70 × 1010

5000 500 2.70 × 1011

5000 5000 2.70 × 1012

500,000 50,000 2.70 × 1013

5,000,000 500,000 2.70 × 1014
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using a window size comprising the entire genome) for 
some time, but we did not let the analysis finish since it 
was too long. However, this allowed us to assess that the 
peak memory used in this case by PLINK was 33.0  Gb, 
but the memory use of PLINK dropped considerably, 
when smaller windows sizes were used.

Discussion
In this paper, we describe the algorithm SNPrune, which 
we developed to efficiently prune SNPs in complete or 
very high LD in datasets containing a large number of 
SNPs. SNPrune was 11 times faster than PLINK when 
applied to a dataset with 3534 pigs and 52k SNPs. We 

also show that SNPrune is able to prune sequence data 
with 2500 individuals and more than 10 million SNPs in 
21 min using 10 threads. These results demonstrate that 
SNPrune is a very efficient algorithm to prune large data-
sets for high levels of LD, e.g. r2 > 0.99 , as used in our 
study.

Pruning based on phased alleles versus allele counts 
gave similar results, both with SNPrune and PLINK, but 
when the analysis used allele counts, it was considerably 
faster, for both algorithms. For SNPrune, the analysis 
using allele counts was almost twice as fast compared to 
using phased alleles, while for PLINK the analysis using 
allele counts was ~ 2 to 4 times faster. The explanation of 
this factor 2 found for SNPrune is that the highest cost 
of SNPrune is to compute the cross-products of either 
the genotypes or the phased alleles, for all pairs of SNPs 
for which the r2 is computed. When using phased alleles, 
each of those cross-products involves twice as many mul-
tiplications compared to when using allele counts. For 
PLINK, the difference is larger, because PLINK actually 
performs the phasing itself, in addition to computing the 
r2 values. Interpolating the results in Fig.  2 shows that 
for window sizes of ~ 15,000 and ~ 25,000 SNPs, PLINK 
needs the same computing time for using either allele 
counts or phased alleles, respectively. In both cases, 
SNPrune removed only ~ 0.4% more SNPs than PLINK. 
Thus, in the case of a sequence dataset with similar 
properties as that used in our study, using PLINK with a 

Table 5  Number of pairs of SNPs for which r2 values were 
computed for the simulated sequence dataset

a  The number of computed r2 values as percentage of the total number of r2 
values
b  The number of computed r2 values as percentage of the total number of r2 
values after pruning for complete LD

Number of pairs of SNPs Phased alleles Allele counts

Possibly > 0.99 107,576,540,902 107,567,702,834

< 0.99 (partial sums) 61,142,300,573 61,152,664,161

Computed r2 values 46,434,240,329 46,415,038,673

Percentage (all SNPs)a 0.08 0.08

Percentage (after pruning for 
complete LD)b

0.47 0.47

Fig. 2  Computation time to prune the sequence data using SNPrune and PLINK with various settings
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sliding window of ~ 20,000 SNPs achieves similar results 
as SNPrune in similar computing time, albeit that PLINK 
still leaves some pairs of distant SNPs in high LD in the 
data.

Applications of SNPrune
To limit computing time with PLINK or other similar 
software, usually only SNPs in close proximity on the 
same chromosome, e.g. less than 2  Mb apart, are com-
pared. When the goal is to evaluate levels of LD, such a 
window-based approach is usually sufficient. When the 
goal is to reduce co-linearity between loci, for instance to 
improve the performance of a subsequent genomic pre-
diction model, then it is desirable to consider all possi-
ble pairwise combinations of loci. SNPrune enables the 
detection of pairs of SNPs that are in strong LD regard-
less of their locations in the genome. In randomly mating 
populations, LD between loci on different chromosomes 
is expected to be low, and pairwise high levels of LD 
may only appear by chance. However, high levels of LD 
between loci on different chromosomes may be more fre-
quent in highly structured populations such as livestock 
populations. Our simulated data mimicked a dairy cattle 
population under selection. Among the removed SNPs, 
considering the analyses based on allele counts, 0.6% 
belonged to a pair of SNPs that were located on differ-
ent chromosomes. The remaining 99.4% belonged to a 
pair of SNPs that were located on the same chromosome, 
and were on average 0.59 cM apart. Nevertheless, pairs of 
SNPs that were on the same chromosome could be sepa-
rated by a large distance (Fig. 3).

In the context of genomic prediction, high LD between 
SNPs can impair model performance [14]. The aim of 
genomic prediction is to put most of the emphasis, in 
terms of estimated effects, on SNPs in close LD with 
typically unobserved causal variants. In this sense, “spuri-
ous” associations, in which a SNP has a large estimated 
effect due to high LD with a causal variant although it is 
not close to it on the genome, are not desired. Such spu-
rious associations will lead to estimated SNP effects that 
erode quickly over time. Thus, from the perspective of 
genomic prediction, it is important to consider all pair-
wise combinations of SNPs when pruning for high LD, 
rather than only those in a sliding window, as for instance 
in VanRaden et al. [20]. For the removal of spurious asso-
ciations, the choice of which SNP should be removed 
from a pair of SNPs that are in high LD, could perhaps be 
made in a more sophisticated way. For a pair of distantly 
located SNPs with high LD, one option is to retain the 
SNP that has the highest LD with the surrounding SNPs. 
If the pair of SNPs is in LD with a causal variant, then 
this SNP is expected to be more likely physically closely 
located to this variant.

Pruning for LD may considerably reduce the computa-
tional burden of genomic prediction based on sequence 
data, since, in our study, the number of SNPs in the 
simulated sequence data decreased by 72%. In the lit-
erature, a reduction of 58% was reported when imputed 
sequence data were used with 14 million SNPs for 5553 
Holstein–Friesian dairy bulls and LD pruning in subsets 
of the SNPs was applied [14], and in another study, a 
reduction of 99.5% was observed using 145 tomato acces-
sions with imputed sequence data with 19.6 million SNPs 
[21]. Nevertheless, our results obtained with PLINK and 
the distribution of the distance between pairs of SNPs 
exceeding the r2 threshold (Fig. 3) show that using a win-
dow approach does lead to the removal of the majority of 
SNPs that are in high LD with each other.

The ability to efficiently identify SNPs that are in high 
LD with other SNPs located elsewhere in the genome, 
while they are in low LD with the surrounding SNPs, 
is also useful for other applications. In empirical analy-
ses, high LD of one SNP with a group of SNPs located 
on another chromosome, maybe an indication that this 
SNP resides in a misassembled segment of the reference 
genome [22]. Therefore, SNPrune could be also a very 
useful tool to detect rapidly genome segments that may 
be misassembled. Similarly, the algorithm could be used 
in LD-based approaches to derive the chromosomal loca-
tions of unmapped SNPs [23–25].

Fine‑tuning SNPrune
The amount of whole-genome sequence data gener-
ated is rapidly growing and soon, datasets for 100,000 
sequenced animals may be available. Computing time is 
expected to increase linearly with increasing numbers of 

Fig. 3  Distribution of distances between pairs of SNPs pruned from 
the sequence data that were located on the same chromosome
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individuals, both for PLINK and SNPrune, because the 
number of multiplications required to compute a single 
r2 value is proportional to the number of individuals. In 
the analyses of the simulated sequence data, 57% of the 
pairs of SNPs that were identified based on their MAF as 
possibly exceeding the threshold of 0.99, were discarded 
by evaluating partial sums (i.e. sums based on subsets of 
the data) of the minor allele rather than the sums of the 
minor allele of the entire data. Here, we used ten par-
tial sums, comprising 10, 20,…, 100% of the data. With 
more individuals, it is possible that the percentage of 
pairs of SNPs that are discarded based on partial sums 
will be larger, and fine-tuning the number of subsets may 
increase this percentage even more.

The implementation of SNPrune presented in this 
paper is not able to deal with missing genotypes, but we 
showed that it is able to efficiently remove SNPs in high 
LD. Pruning for considerably lower LD thresholds, i.e. r2 
values lower than 0.8, means that the maximum differ-
ence in MAF for a pair of SNPs to possibly exceed this 
threshold will be considerably larger. This could lead to a 
relatively small reduction in the number of r2 values that 
need to be computed, compared to all pairwise combina-
tions. Extending the algorithm to tolerate small amounts 
of missing data, and fine-tuning its performance for con-
siderably lower LD thresholds, may increase its poten-
tial for other applications than those investigated in our 
study.

While SNPrune is able to remove SNPs in high LD 
throughout the genome in large datasets very efficiently, 
the current implementation uses a one-byte format to 
handle (phased) SNP genotypes. Therefore, additional 
computing improvements could be realised by using a 
packed 2-bit format, which will allow bit-level operations 
and parallelism, as detailed by Chang et  al. [18]. Adap-
tation of the two algorithms for bit-level parallelism is 
possible because their main operations involve integers 
0 and 1 for phased genotypes, or integers 0, 1, and 2 for 
allele counts (if missing values are ignored). As previ-
ously mentioned, allele counts could be considered as 
phased SNPs. Using such a packed 2-bit format, bit-level 
operations will improve the computation of terms such 
as 

∑2
l=1

∑

i ai,j,l or 
∑2

l=1

∑

i ai,j,lai,k ,l , and reduce RAM 
and CPU time requirements, which would improve the 
efficiency of SNPrune even more.

Conclusions
We developed an algorithm SNPrune that is able to 
remove SNPs in high LD throughout the genome in large 
datasets very efficiently. For a simulated whole-genome 
sequence dataset, we show that 72% of the SNPs were 
removed by pruning SNPs with r2 higher than 0.99, 
which reduces computational burden in subsequent 

genomic prediction due to the steeply reduced dimen-
sion of the data, but also to the considerable reduction in 
co-linearity in the SNP data. The SNPrune algorithm may 
also be useful for other applications such as detection of 
misassembled segments in reference genomes.
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